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Adaptive solution of a one-dimensional order reconstruction
problem in Q-tensor theory of liquid crystals
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{Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland

{Hewlett-Packard Labs, Filton Road, Stoke Gifford, Bristol BS34 8QZ, England

(Received 7 September 2006; in final form 14 December 2006; accepted 14 December 2006)

In this paper we illustrate the suitability of an adaptive moving mesh method for modelling a
one-dimensional liquid crystal cell using Q-tensor theory. Specifically, we consider a time-
dependent problem in a Pi-cell geometry which admits two topologically different equilibrium
states and model the order reconstruction which occurs on the application of an electric field.
An adaptive finite element grid is used where the grid points are moved according to
equidistribution of a monitor function based on a specific property of the Q-tensor. We show
that such moving meshes provide the same level of accuracy as uniform grids but using far
fewer points, and that inaccurate results can be obtained if uniform grids are not sufficiently
refined.

1. Introduction

External influences such as bounding surfaces or an

applied electric field can induce changes in director

orientation in a liquid crystal cell. Changes in the

scalar order parameters are less usual in classical liquid

crystal cells, but in regions where distortion of the

director occurs over small length scales (10–100 nm), the

molecular order may be significantly altered. The

consequential effect on the optical and, in particular,

switching properties of the liquid crystal system is of

key importance, and has become increasingly so in

recent years with the development of the zenithal

bistable nematic (ZBN) [1, 2] and Pi-cell [3]. It is

therefore crucial that the behaviour and nature of these

defects can be accurately represented by any numerical

model.

The nematic liquid crystal phase can be modelled

mathematically by the director, a unit vector n in the

direction of the local preferred alignment, and a

measure of how ordered the molecules are in this

direction, the scalar order parameter S [4]. Although

this uniaxial description is sufficient for the majority of

situations, the most general configuration of molecules

in a nematic material is a biaxial state. To describe this

state, it is necessary to specify two directors (n and m)

and two scalar order parameters (S1 and S2). A static

theory of nematic liquid crystals which allows for

changes in the scalar order parameters (but does not

include fluid flow) was developed from the theory of

Landau by de Gennes [5]. In this case, minimization of

the total free energy of a liquid crystal sample leads to a

set of five coupled differential equations for the five

degrees of freedom of the order parameter tensor Q,

which is the symmetric traceless second rank tensor

defined by

Q~S1 n6nð ÞzS2 m6mð Þ{ 1

3
S1zS2ð ÞI ð1Þ

where I is the identity matrix [5]. A detailed description

of this model can be found in [6]. More recently,

extensions of this theory have been proposed by Beris

and Edwards [7], Olmsted and Goldbart [8] and Sonnet

et al. [9].

One advantage of a Q-tensor (as opposed to a

director-based) description is that topological defects

do not appear as mathematical singularities. This

means that relatively unsophisticated numerical meth-

ods can often be used to model certain simple

configurations, particularly in the context of identify-

ing static equilibrium states. A number of authors

have previously presented numerical studies in this

vein, using finite difference discretizations on uniform

grids to calculate steady state solutions. For example

Schopohl and Sluckin investigated the core structure

of half-integer wedge disclinations in a two-dimen-

sional region [10]; the conversion of a reverse tilt wall

to a pair of disclination lines was modelled by Lee

et al. [11], and Sonnet et al. [12] proposed a method

using a finite difference discretization with a one-step*Corresponding author. Email: A.Ramage@strath.ac.uk
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SOR-Newton method which performed well in both

two and three dimensions. In terms of other dis-

cretizations, finite element analysis of the Landau–de

Gennes minimization problem was presented by Davis

and Gartland [13]. Gartland et al. have computed

elastic forces on nematic point defects using nonuni-

form grids of triangular elements [14]. A scheme based

on the adaptive finite element mesh refinement work

of Oden et al. [15] was used by Fukada and co-

workers for modelling static defect structure for

certain axisymmetric geometries in two and three

dimensions [16, 17]. The static configuration of defects

in a two-dimensional representation of a ZBN device

has recently been investigated numerically by

Mottram and Newton [6], again using spatially-

adaptive finite elements.

In addition to the defect core structure, the dynamics

of defect movement is also a crucial issue for liquid

crystal cells. Numerical simulations of such effects are

much less common in the current research literature.

Barberi et al. [18] recently used a one-dimensional

numerical model to investigate the dynamics of the

biaxial switching of a nematic cell subjected to a strong

electric field. The thesis of Svensek [19] studies the

dynamics of the order parameter coupled to hydro-

dynamics in two dimensions, but using director theory

rather than the Q-tensor approach proposed here. Both

of these works use standard finite difference discretiza-

tions on uniform grids. However, the presence in the

physical problem of characteristic lengths with large

scale differences (the size of the defect is very small

compared with that of the cell) suggests that more

sophisticated numerical modelling techniques could be

used here to great effect.

One obvious approach is to use an adaptive grid

technique, ensuring that there is no waste of

computational effort in areas where there is no need

for a fine grid. Adaptive grid methods have been

successfully used to solve partial differential equations

(PDEs) in many branches of computational mathe-

matics such as computational fluid dynamics, math-

ematical biology, semiconductor modelling and

aerospace engineering (see, for example, [20–25]). In

this paper we present an introductory study of the use

of adaptive grid methods for solving PDE problems in

Q-tensor theory of liquid crystals. Specifically, we

consider the time-dependent order reconstruction

problem studied in [18] which requires the solution

of six coupled PDEs. We illustrate the feasibility of

using a moving mesh adaptive grid technique and

show that it has advantages in terms of accuracy and

efficiency over using a uniform grid with the same

number of points.

2. Basic Q-tensor theory

A full account of the director-based mathematical

theory of liquid crystals can be found in [26]. An

expression for the free energy density of the form

F~

ð
V

F h, w, +h, +wð ÞdVz

ð
S

F h, wð ÞdS

can be derived, where V is the volume and S is the

surface of the liquid crystal region. The problem of

finding the minimum energy can then be tackled using a

calculus of variations approach. This theory assumes

that the liquid crystal is uniaxial and that the order is

constant throughout. In cases where order variations

are important (for example, in the ZBN display where

defects stabilize one of the states) the order can be

explicitly included by introducing the scalar order

parameter, S, or implicitly by using the tensor order

parameter, Q, as defined in [1]. Using the Q-tensor

removes the assumption that the material is uniaxial

and it is this more general approach that we use here.

In general, Q can be represented by a symmetric

traceless matrix as

Q~

q1 q2 q3

q2 q4 q5

q3 q5 {q1{q4

2
64

3
75 ð2Þ

involving the 5 quantities qi, i51, …, 5. If it is assumed

that distortions of Q are small, the resulting F can be

taken to depend only on Q and its first derivatives, that

is,

F~

ð
V

Fbulk qi, +qið Þdvz

ð
S

Fsurface qið Þds:

Full details of this process can be found in, for example,

[6]. If fixed boundary conditions are applied (strong

anchoring), the surface energy term can be ignored in

the minimization. Taking the elastic energy up to

second order in the gradient of Q, the bulk energy can

be written as F bulk~FthermotropiczFelastic:FtzFe, with

Ft~
1

2
A T{T�ð Þtr Q2{

ffiffiffi
6
p

3
B tr Q3z

1

4
C tr Q2
� �2

Fe~
1

2
L1 div Qð Þ2z 1

2
L2 +|Qj j2

ð3Þ

where A, B, C, L1 and L2 are positive constants, T

represents temperature and T* is the pseudocritical

temperature at which the isotropic phase becomes

unstable (see [27]). Estimates for these material para-

meters can be obtained from the literature.

For computational purposes, it is useful to non-

dimensionalize the equations (3) with respect to the
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nematic coherence length f~ 9CL2

�
2B2
� �� �1

2. The

values for material constants used throughout this

paper (taken from [18]) are: L159.7610212 N,

L252.4610212 N, A50.136106 J K 25 m23, B51.66
106 J K 25 m23, C53.96106 J K 25 m23; giving f5

4.0661029. Using a value of T–T*520.38uC results

in the scaled parameters (which we will denote with s)

L1s54.0417, As520.33682, Bs510.969 and Cs526.736.

3. Adaptive grid methods

It is well known in the numerical analysis community

that adaptive or moving mesh methods are capable of

resolving solutions with sharp transitions such as

boundary layers to acceptable degrees of accuracy

without using an excessive number of grid points. The

two main strategies in common use are local mesh

refinement (known as h or p refinement), where extra

nodes are added on a local basis in regions of high error,

and mesh movement (r refinement), where existing grid

points are moved to regions of high errors while

maintaining the same grid connectivity. In this paper,

we consider the latter approach. For these methods, the

adaptive grid is generally constructed as the image

under a suitably defined mapping of a fixed mesh over

an auxiliary domain. The advantages include relatively

simple implementation, comparatively easy extension of

existing software for fixed mesh methods, and minimal

numerical diffusion and dispersion (that is, the shape

and speed of time-dependent features of the solution are

accurately reproduced).

As stated above, r refinement adaptive methods use

non-uniform grids which, as time evolves, concentrate

grid points in spatial regions of high activity and follow

the features of the computed solution. One common

theme of many such adaptive methods is the idea of

equidistribution, introduced by de Boor [28] for solving

boundary value problems for ODEs. The idea is to

select grid points in order to limit some measure of the

solution error (defined using a monitor function) by

distributing it equally across each subinterval. Many

different ways of generating adaptive methods based on

equidistribution principles have been developed, via

both discrete moving mesh equations (which are

systems of ODEs) and continuous moving mesh

equations (so-called moving mesh PDEs, or

MMPDEs). Here we illustrate the ideas involved for a

simple PDE in one dimension.

Suppose we are solving on a physical domain Vp;[0,

1] for an unknown function u(z, t). To generate a grid,

we look for a mapping from computational space

Vc6(0, T] say (where Vc is usually taken to be the same

as Vp) to physical space Vp6(0, T] such that, in the

transformed variables, the variation of the selected

monitor function is reduced. For example, if z and j
denote the physical and computational coordinates,

respectively, a one-to-one coordinate transformation

between the domains is denoted by

z~z j, tð Þ, j[Vc~ 0, 1ð Þ, t[ 0, Tð �

z 0ð Þ~0, z 1ð Þ~1:

We impose a uniform mesh on the computational

domain, given by

ji~
i

N
, i~0, 1, . . . , N

where N is a positive integer, and denote the corre-

sponding mesh in Vp by

0~z0 tð Þvz1 tð Þv . . . vzN{1 tð ÞvzN tð Þ~1:

For a chosen monitor function M(u(z, t)), the one-

dimensional equidistribution principle (EP) can be

expressed as

ðz j, tð Þ

0

M u s, tð Þð Þds~j

ð1

0

M u s, tð Þð Þds: ð4Þ

This EP can be expressed equivalently in discrete form

as

ðziz1 tð Þ

zi tð Þ
M u s, tð Þð Þds~

ðzi tð Þ

zi{1 tð Þ
M u s, tð Þð Þds, i~1, . . . , N{1

or

ðzi tð Þ

zi{1 tð Þ
M u s, tð Þð Þds~

1

N

ð1

0

M u s, tð Þð Þds, i~1, . . . , N: ð5Þ

We also note in passing that differentiating (4) once

with respect to j gives a differential form of the EP,

M z j, tð Þð Þ L
Lj

z j, tð Þ~
ð1

0

M u s, tð Þð Þds

which can be regarded as an MMPDE.

One major issue associated with the generation of

adaptive grids based on an equidistribution principle is

the choice of a suitable monitor function. This is

particularly true for complicated PDEs and in higher

dimensions. For the one-dimensional (1D) problems

considered here, we restrict our attention to one of the

standard methods and choose M to be a measure of the

arc-length of a specified quantity, here the solution u(z).

That is, we take

M u z, tð Þð Þ~ mz
Lu

Lz
z, tð Þ

� �2
" #1

2

ð6Þ

where m is a user-prescribed scaling parameter.
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Examples of the use of other monitor functions for 1D

problems can be found in [29–31].

The overall adaptive solution process has two key

components, namely, the generation of a grid and the

solution of the physical differential equation(s) on that

grid. For a general multi-dimensional time-dependent

problem, this can be considered as an iterative process

with two main steps: (1) a mesh is generated using

equidistribution (based on the numerical solution at the

current time step); (2) the physical PDEs are solved on

the new mesh to produce the solution at the new time

level.

At time t50, the grid points are uniformly distrib-

uted. In this paper, step 1 is implemented using the

method presented by Sanz-Serna and Christie [32],

which is equivalent to equidistributing the arc-length

monitor function given by equation (6) over the interval

[0, 1]. Step 2, and the advancement of the solution in

time, is carried out using the COMSOL Multiphysics

finite element package [33]. Specifically, at each time

step the physical PDEs are solved using finite element

approximation with quadratic elements. The solution u

is then updated in time via one step of the COMSOL

time-dependent solver, femtime.

4. A one-dimensional model problem

In this section we summarize the results in [34] where a

simple uniaxial 1D model problem is used to assess the

accuracy and efficiency of an adaptive grid technique.

The problem involves a sample with homogeneous

uniaxial alignment in the one-dimensional domain

Vs;z g [0, ds], where the domain has been scaled in

accordance with the non-dimensionalization adopted in

§ 2; that is, the true length of the physical domain is

d mm microns where d5dsf. For uniaxial problems with

the z-axis in the direction of n, (1) becomes

Q~

ffiffiffi
3

2

r
S

{ 1
3

0 0

0 { 1
3

0

0 0 2
3

2
64

3
75

so that Q depends only on the scalar order parameter S,

with tr (Q2)5S2. As a result, the free energy density can

be minimized by solving a single Euler–Lagrange

equation for S, subject to suitable boundary conditions.

Furthermore, the expressions for the energies in

equation (3) simplify to

Ft~
1

2
AsS

2{
1

3
BsS

3z
1

4
CsS

4, Fe~
2L1sz1

6

� �
LS

Lz

� �2

ð7Þ

so the governing differential equation for S is therefore

the Euler–Lagrange equation

S00~aS{bS2zcS3, a~
3As

2L1sz1
, b~

3Bs

2L1sz1
, c~

3Cs

2L1sz1
: ð8Þ

This is solved subject to the boundary conditions S50

at z50 and S5Seq at z5ds. The equilibrium nematic

scalar order parameter Seq (which minimizes (7)) given

by Seq~ Bsz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

s {4AsCs

p� ��
2Cs. Approximations to

the exact solutions of equation (8) (calculated using

numerical integration) for regions of length d50.1, 1,

10 mm are plotted in figure 1 (for clarity, these plots

show z g [0, d/2] only). In each case, the solution

features a boundary layer of width approximately

25 nm, which occupies a smaller proportion of the total

cell length as d increases.

To resolve these layers accurately on a finite element

(or finite difference) grid, a high concentration of

grid points is required in the boundary layer. With a

uniform grid, this means that the grid must be highly

refined throughout the domain, thus wasting much

Figure 1. Plot of order parameter S for domains of varying length. For clarity, the right-hand half of each domain has been
omitted: (a) d50.1 mm, (b) d51 mm, (c) d510 mm.

(8)
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computational effort. Here we seek a suitable adaptive

grid by equidistributing the solution arc-length in order

to move grid points into the boundary layer.

Specifically, we use the adaptive algorithm described

above with monitor function

M S z, tð Þð Þ~ 1z
dS

dz
z, tð Þ

� �2
" #1

2

:

As this is a stationary problem, we introduce a ‘false’

timescale and apply the iteration until the grid points

are no longer moving with time; that is, until the grid

has reached a steady state distribution. The resulting

mesh trajectories (plotted against time) with N564 and

d51 mm are shown in figure 2 (a). Figure 2 (b) shows a

magnification of the trajectories over the first ten time

steps (the time step size is dt51e–6). It can be seen that

the node points move very quickly in response to the

presence of the boundary layer.

By considering the error incurred when the exact

solution to a closely related problem is approximated

by its linear interpolant, it can also be shown that we

expect the adaptive grid obtained to exhibit the same

rate of uniform convergence as a uniform grid with

the same number of points [34]. In addition, the

errors incurred with uniform and adaptive grids for

the model problem above can be quantified by

comparing computed solutions with a numerical

solution calculated using a very fine uniform grid

and using linear interpolation to obtain the values of

this fine grid solution at the current grid points. The

results in [34] show that where it can be accurately

measured, the error with the adaptive grid is smaller

than the error with a uniform grid with the same

number of points. That is, a smaller number of points

are required to achieve a fixed order of accuracy with
an adaptive grid rather than a uniform one.

Furthermore, a comparison of CPU times shows that

the cost of calculating the adaptive grid is not

prohibitive and the relative efficiency of the adaptive

method improves as higher accuracy (smaller toler-

ance) is required.

5. An order reconstruction example

In this section we consider a more realistic 1D example,

namely the order reconstruction problem studied by

Barberi et al. [18]. The geometry is that of the Pi-cell [35]
and the liquid crystal parameters used are taken from

[18], as described in § 2. At both boundaries, the cell

surface is treated so as to induce alignments uniformly

tilted by a specified tilt angle, ht, but oppositely directed.

This set-up admits two topologically different equili-

brium states: in one, there is a mostly horizontal

alignment of the director with a slight splay; in the

other, there is a mostly vertical alignment with a bend of
almost p radians. Depending on the tilt angle and ratio

of the elastic moduli, either of these states might have a

lower elastic energy, but the energy barrier between

Figure 2. Mesh trajectories for N564 and d51 mm. The plots shows the paths followed by each node as time evolves. (a) Node
trajectories against time. (b) Magnification for first 10 time steps.
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them is always large enough to prevent a spontaneous

transition. Here, an electric field is applied and the

order reconstruction (which, from symmetry considera-

tions, will take place in the centre of the cell) is

modelled.

As this is not a purely uniaxial problem, we must

consider the full Q-tensor (2). The resulting Euler–

Lagrange equations are five coupled PDEs, correspond-

ing to qi, i51, …, 5. These must be solved in

conjunction with an additional PDE for the electric

potential U. These equations are cumbersome and will

not be reproduced here: details can be found in [6, 18].

To monitor the order reconstruction, we use the

invariant measure of biaxiality given in [18], that is,

b~ 1{
6 tr Q3
� �2

tr Q2ð Þ3

" #1
2

: ð9Þ

The initial configuration has a tilt angle which varies

linearly with z between ht and 2ht. A pulse of voltage V

is applied at time t5261023 s for a duration of 0.25 ms

and the time step size is dt5161027 s. When V is less

than a critical value, the biaxiality in the centre

increases, but when the field is switched off, the cell

slowly relaxes back into its original state. However,

when the applied voltage is high enough, the orientation

in the centre becomes purely biaxial (b51) and the

transition to the mostly vertical state takes place.

In this case, the physical problem is modelled by six

coupled PDEs so, unlike for the model problem in § 4,

there is no simple solution on which to base an

equidistribution principle. Here we replace u(z, t) in

equation (6) by T z, tð Þ~tr Qð Þ2, that is, we use the

monitor function

M T z, tð Þð Þ~ 1z
dT
dz

z, tð Þ
� �2

" #1
2

:

The quantity T z, tð Þ is an appropriate choice here as it

is known to vary rapidly in the neighbourhood where

order reconstruction will occur, that is, where high

resolution of the numerical solution is required. The

Euler–Lagrange equations are solved at each time step

using COMSOL quadratic finite element approxima-

tion as before, and the adaptive method used is the full

time-dependent algorithm described in § 3.

In these experiments, we aim to mimic the results

presented in [18]. We therefore consider a tilt angle of 20u
and a region of length d51 mm. Plots of equation (9) for

the two voltages, V511.3 and 11.32 V, which are sub-

and super-critical, respectively, are shown in figures 3 (a)

and 3 (b). These are comparable to figures 6 and 7 in [18]

(although we have used 256 grid points in space as

opposed to the 1000 used there). The node trajectories for

the adaptive grids are shown in figure 4, where only every

second grid point has been included for clarity. In

figures 4 (a) and 4 (b), the voltage V511.3 V is low

enough for the cell to relax back to its initial configura-

tion after the electric field is switched off, which is

reflected in the grid paths. The right-hand plot is a

magnification of what happens to the adaptive grid as

this occurs. Similarly, figures 4 (c) and 4 (d) are asso-

ciated with a voltage of V511.32 V, which triggers a

biaxial transition. The right-hand plot is a magnification

of what happens to the node points when this transition

takes place; namely, they reform a uniform grid.

Figure 3. Plots of biaxiality at sub- and super-critical voltages: (a) V511.3 V, (b) V511.32 V.
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When the applied voltage is high enough, the

orientation in the centre becomes purely biaxial, so

b51 and transition to the vertical state takes place. At

the cell centre, two eigenvalues of Q are exchanged. This

exchange of eigenvalues is illustrated in figure 5 (cf.

[[18], figure 8]). Figure 6 (a) shows a close-up of the

structure in the centre of the cell, where the order

reconstruction takes place on a timescale of a few ms.

The biaxiality here actually has a volcano-like structure,

with the base of the crater being a single point

representing a planar uniaxial state with b50 (this is

where two eigenvalues of Q are equal and positive). The

adaptive grid has clearly captured this feature accu-

rately (cf. [[18], figure 9]). Figures 6 (b) and 6 (c) show

Figure 4. Adaptive grids trajectories for order reconstruction problem; each plot shows the paths followed by the nodes as time
evolves. (a) Adaptive grid trajectories, V511.3 V; (b) magnified grid trajectories as field is switched off, V511.3 V; (c) adaptive grid
trajectories, V511.32 V; (d) magnified grid trajectories during biaxial transition, V511.32 V.
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cross-sections of this structure at the cell centre when

using a uniform grid and adaptive grid, respectively,

both with N5256 points. The uniform grid has failed to

capture the volcano’s crater, but the adaptive grid

represents the structure well, with b close to zero at the

cell centre. In addition to this inaccuracy in the

structure, the time at which switching occurs is also

wrong when calculated using a uniform grid with 256

points. A full comparison of switching times is given in

table 1. It can be seen that when the uniform grid is not

fine enough, switching either does not occur at all or

occurs at a later time. In contrast, the switching process

is modelled correctly by a relatively coarse adaptive

grid. In terms of the planar uniaxial point at the

volcano’s centre, a uniform grid with N51024 gives a

value of 3.2861021 while an adaptive grid with N5128

gives 2.3761021. The latter is therefore giving a more

accurate solution (measured in this sense) using 8 times

fewer grid points.

As an indication of efficiency, we note that the overall

time taken (in CPU seconds) for the full time-dependent

calculation over time interval T was as follows: for

V511.3 V and T50.5 ms, the uniform grid of 1000

points took 1.52956104 s and the adaptive grid of 256

points took 9.83126103 s. For V511.32 V and

T50.2 ms, the uniform grid of 1000 points took

7.69186103 s and the adaptive grid of 256 points took

5.76186103 s. These figures indicate that the overhead

from calculating the adaptive grid is not prohibitive and

we still speed up the solution process by a significant

amount.

6. Observations and conclusions

In this paper we have given an example of how adaptive

grids can be used to solve one-dimensional problems in

Q-tensor theory. The specific method used, i.e. that of

equidistributing the arc-length of tr Q2, proved to be

very effective for a realistic order reconstruction

problem involving the solution of six coupled PDEs.

With an adaptive grid, we were able to reproduce the

results of other authors [18] in a more efficient way

using fewer computational resources. The moving

meshes studied here provided the same level of accuracy

Figure 5. Eigenvalues of Q at the cell centre.

Figure 6. Detail of the biaxial transition at the cell centre measured using b in equation (9). (a) Contour plot of b at cell centre
during transition; (b) uniform grid, N5256; (c) adaptive grid, N5256.

Table 1. Times at which switching occurs (in microseconds)
when V511.32 V.

N Uniform Adaptive

128 no switching occurs 2.06461023

256 2.10061023 2.06461023

512 2.06561023 2.06461023

1024 2.06461023 2.06461023
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as uniform grids, but using far fewer points, resulting in

a computational saving. In addition, it was shown that

using a uniform grid which is insufficiently fine led to

incorrect modelling of the nature and timing of the

switching process. We anticipate that these adaptive

grid methods have the potential for similar gains in two-

and three-dimensional problems.
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